Worksheet for 2021-11-01

Conceptual questions

Question 1. For each line integral below, would you proceed by direct parametrization, FTLI, or Green's Theorem? (There may not be merely one "correct" answer.)
(a) C is $x^{2}+y^{2}=9, x \geq 0, y \geq 0$ from $(3,0)$ to $(0,3)$, and the integral is $\int_{C}\langle 0, x-2\rangle \cdot \mathrm{dr}$.
(b) Same C as previous part, with $\int_{C}\left\langle x^{2}, y^{3}\right\rangle \cdot \mathrm{dr}$.
(c) D is the path from $(-1,1)$ to $(2,4)$ in a straight line, and then back to $(-1,1)$ via the parabola $y=x^{2}$, and the integral is $\int_{D} x \mathrm{~d}$.
(d) Same D as previous part, with $\int_{D}\left\langle\sin \left(x^{3}\right), x y^{2}\right\rangle \cdot \mathrm{dr}$.
(e) E is the piecewise linear path from $(-2,0)$ to $(-1,1)$ to $(1,1)$ to $(2,0)$, and the integral is $\int_{E}\left\langle x^{2}, y^{3}\right\rangle \cdot \mathrm{dr}$.
(f) Same E as previous part, with $\int_{E}\left\langle\sin \left(x^{3}\right), x y^{2}\right\rangle \cdot \mathrm{dr}$.

Question 2. Let D be the annulus

$$
1 \leq x^{2}+y^{2} \leq 4
$$

What is the "positively oriented boundary" of D ? Hint: If it helps, try breaking D into an upper half and a lower half and considering the two halves separately.

Computations

Problem 1. Consider a polygon in the plane, whose vertices read counterclockwise are

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

(so n is the number of vertices, e.g. $n=5$ for a pentagon).
(a) Use the fact that $\langle P, Q\rangle=\langle-y / 2, x / 2\rangle$ has $Q_{x}-P_{y}=1$ to come up with a formula for the area of the polygon in terms of the constants $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$.
(b) Let $\mathbf{v}_{i}=\left\langle x_{i}, y_{i}, 0\right\rangle$. Show that your expression from the preceding part is the same as the z-component of the vector

$$
\frac{1}{2}\left(\mathbf{v}_{1} \times \mathbf{v}_{2}\right)+\frac{1}{2}\left(\mathbf{v}_{2} \times \mathbf{v}_{3}\right)+\cdots+\frac{1}{2}\left(\mathbf{v}_{n-1} \times \mathbf{v}_{n}\right)+\frac{1}{2}\left(\mathbf{v}_{n} \times \mathbf{v}_{1}\right) .
$$

Can you interpret this area formula geometrically?
(c) In part (a) we could've taken $\langle P, Q\rangle=\langle-y, 0\rangle$ or $\langle 0, x\rangle$ instead. How would the geometric interpretations of the final expressions differ? (Of course, the whole expression is equal to the area of the polygon, but what about term-by-term?)
If doing it in full generality is too much to start with, pick a specific triangle and do it with that.

